

Page 1 of 9

FREEDOM TO OPERATE SEARCH

Title: Method and apparatus for breakpoint analysis of computer programming code using

unexpected code path conditions Submitted to:

Address:

Email:

Client Reference No:

Patent Number: US7353427

Priority Date: 8 Apr 2004 Date:

Claims:

1. A method for analyzing a computer program, comprising the steps of: defining a plurality

of breakpoints for said computer program, at least one of said breakpoints including a

respective expected code path condition; executing said computer program;

with respect to each breakpoint including a respective expected code path condition

encountered during execution of said computer program, automatically determining whether

an actual code path taken during execution of said computer program matches the respective

expected code path condition of the encountered breakpoint; and

automatically halting execution of said program if said actual code path taken during

execution of said computer program does not match the expected code path condition

regardless of the condition of any key variable specified as a condition of the conditional

breakpoint.

Feature to Search

E1.A method for analyzing a computer program, comprising a plurality of breakpoints for said

computer program, at least one of said breakpoints including a respective expected code path

condition,

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/7353427
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/7353427
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/7353427

Page 2 of 9

E2. Executing said computer program; with respect to each breakpoint including a respective

expected code path condition encountered during execution of said computer program,

automatically determining whether an actual code path taken during execution of said

computer program matches the respective expected code path condition of the encountered

breakpoint;

E3. Automatically halting execution of said program if said actual code path taken during

execution of said computer program does not match the expected code path condition

regardless of the condition of any key variable specified as a condition of the conditional

breakpoint.

Search Strategy

Database: AcclaimIP, USPTO, Patentscope, Espacenet, Google Patents, Inpass.

Keywords:

Set 1 breakpoint

Set 2 Computer program, coding, application program

Set 3 Halt, stop,

Set 4 Match, emulate

US CLASSIFICATIONS

717/124 Testing or debugging

717/129 Using breakpoint

713/2 Loading initialization program (e.g., booting, rebooting, warm booting,

remote booting, BIOS, initial program load (IPL), bootstrapping)

INTERNATIONAL CLASSIFICATIONS

G06F11/36 Preventing errors by testing or debugging of software

Page 3 of 9

G06F9/46 Multiprogramming arrangement

G06F9/44 Arrangements for executing specific programmes

Search Results Reference 1:

Patent/Publication Number US6434741

Title: Method and apparatus for debugging of optimized code using emulation

Assignee/Applicant: Hewlett-Packard Company

Filing Date: 30 Apr 1998

Priority Date: 30 Apr 1998

Also Published as: NONE

Relevant Excerpt E1 IN CLAIMS:

1. A method for debugging a machine code of a program that has

been subjected to an optimizing action, wherein the machine code

may have been reordered, duplicated, eliminated or transformed

so as not to correspond with the program's source code order, said

method comprising the steps of:

a) deriving a table which associates each machine code

instruction with a source construct for which it was generated;

b) setting one or more breakpoints in said source code;

c) determining at least one corresponding location for a

breakpoint in said machine code through use of said table;

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6434741
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6434741
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6434741

Page 4 of 9

Relevant Excerpt E2 IN CLAIMS:

 1.d) executing, by emulation, only machine code instructions

which correspond to source constructs that precede said

breakpoint in said source code order to provide for a user,

execution of a sequence of said machine code instructions in

accordance with a sequence of corresponding source constructs;

Relevant Excerpt E3 IN CLAIMS:

1.e) Emulating the machine code instructions in the order in

which instructions appear in the machine code; and

f) Comparing results of steps d) and e) and if a difference is

detected in an effect produced by any emulated instruction,

indicating a bug or an optimizer error.

Reference 2:

Patent/Publication Number US6681384

Title: Multi-threaded break-point

Assignee/Applicant: International Business Machines Corporation

Filing Date: 23 Dec 1999

Priority Date: 23 Dec 1999

Also Published as: None

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6681384
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6681384

Page 5 of 9

Relevant Excerpt E1 IN CLAIMS:

22. (a) determining that a pre-determined number of the plurality

of threads have reached the synchronization breakpoint,

(b) determining that a predetermined amount of time has

 elapsed since said first thread reached the synchronization

break-point, and

(c) determining that a user-specified thread has reached the

synchronization break-point ; and; and responsive to determining

that a break condition has been satisfied, halting execution of all

threads of said multi-thread program.

Relevant Excerpt E2 IN CLAIMS:

11. a debug controller, resident in the memory and executing on

the processor, wherein the debug controller is configured to

execute a portion of the multi-threaded program for debugging,

wherein the debug controller, when read and executed by the

processor, comprises steps of:

executing the multi-thread program, wherein the multi-thread

program comprises a plurality of threads, halting execution of a

first thread at a synchronization breakpoint, while the first thread

is halted, continuing execution of other of the plurality of threads

that have not yet reached the synchronization break-point;

Page 6 of 9

Relevant Excerpt E3 IN CLAIMS:

22.halting execution of a first thread at a synchronization break-

point, while the first thread is halted, continuing execution of

other of the plurality of threads that have not yet reached the

 synchronization break-point; thereafter determining that a

synchronization break condition has been satisfied, while said first

thread remains halted, wherein said synchronization break

condition includes at least one condition from the set consisting

of:

(a) determining that a pre-determined number of the plurality

of threads have reached the synchronization break-point,

(b) determining that a predetermined amount of time has

elapsed since said first thread reached the synchronization break-

point, and

(c) determining that a user-specified thread has reached the

synchronization break-point; and; and responsive to determining

that a break condition has been satisfied, halting execution of all

threads of said multi-thread program.

Page 7 of 9

Reference 3:

Patent/Publication Number US7827540

Title: Method for program debugging

Assignee/Applicant: Micro-Star Int'l Co., Ltd.

Filing Date: 11 Feb 2004

Priority Date: 13 Feb 2003

Also Published as: US20040194067, TW588238, TW200415461, US7827540

Relevant Excerpt E1 IN CLAIMS:

 1. A method for program debugging, the method comprising:

setting a plurality of breakpoints corresponding to a plurality of

events in a Basic Input/Output System (BIOS) program code, each

event being a test executed by the BIOS program code to a

peripheral device and taking a general processing path when the

peripheral device is working well or an error processing path when

the peripheral device is in an error state;

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/7827540
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/7827540

Page 8 of 9

Relevant Excerpt E2 IN CLAIMS:

7. A method for program debugging, the method comprising:

setting a plurality of breakpoints corresponding to a plurality of

events in a driver program code, each event being a test executed

by the driver program code to a peripheral device and taking a

general processing path when the peripheral device is working

well or an error processing path when the peripheral device is in

an error state; setting a parameter by a branch command of a

script file via an emulator to simulate that the peripheral device is

working well throughout execution of the driver program code;

executing the driver program code according to the parameter for

outputting a diagnosis code corresponding to each breakpoint of

the plurality of breakpoints; for said each breakpoint, determining

whether the diagnosis code matches a user defined diagnosis

code; and resetting the parameter by the branch command of the

script file via the emulator to simulate that the peripheral device

is in the error state and executing the event corresponding to the

 diagnosis code according to the reset parameter for making the

event undergo the error processing path when it is determined

that the diagnosis code matches the user defined diagnosis code;

Page 9 of 9

Relevant Excerpt E3 IN CLAIMS:

7.wherein the breakpoints are software interrupt, using a trap to

stop the execution of the emulator; wherein the breakpoint can

be set ahead or after program codes of the corresponding event;

if the breakpoints are set ahead of the corresponding events, the

parameters are reset after the breakpoints; if the breakpoints are

set after the corresponding events, the script file should

spontaneously jump ahead of the branch command of the event

and reset the parameter of the event.

**

