

Page 1 of 7

PATENTABILITY SEARCH REPORT

Title: A Debugging and Testing Tool for Supporting Software Evolution Submitted

to:

Address:

Email:

Client Reference No:

Date: 10th JUL 2016

Features to Search

E1. The tool enhances the traditional debugging approach by automating the comparison of

data structures between two running programs.

E2. The tool allows the reference code and the program being developed to execute on

different computer systems by using open distributed systems techniques.

E3. A data visualization facility allows the user to view the differences in data structures and

by using the data flow of the code it is possible to locate faulty sections of code rapidly.

Search Strategy

Database: AcclaimIP, USPTO, Patentscope, Espacenet, Google Patents.

Keywords:

Set 1 Automatic software testing, debugging, testing, evolutionary software

Set 2 Comparison, difference, variation

Set 3 Execute, apply

Set 4 Data structures, data variables

Set 5 Program, code, reference code,

Set 6 Faulty sections,

Page 2 of 7

US CLASSIFICATION CODES WITH DEFINITIONS:

717/129 Using breakpoint

714/E11.208 Software debugging

INTERNATIONAL CLASSIFICATION CODES WITH DEFINITIONS:

G06F11/36 Preventing errors by testing or debugging of software

Search Results Reference
1:

Patent/Publication Number: US5838975

Title: Method for testing and debugging computer programs

Assignee/Applicant: Abramson; David Andrew, Sosic; Rok

Filing Date: 18 Apr 1995

Priority Date: 19 Apr 1994

Also Published as: None

Relevant Excerpt for E1 IN ABSTRACT:

A computerized method of testing and debugging an executable

behaviorally unknown computer program by dynamic

comparison with an executable behaviorally known computer

program. The method controls execution of each program and

compares related variable values at selected breakpoints in each

program.

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5838975
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5838975

Page 3 of 7

Relevant Excerpt for E2 IN DESCRIPTION:

Col. 3 lines 36-48

Referring to FIG. 1 there is illustrated a comparison method for

testing and debugging a computer program in which a user

 selects an executable behaviourally known computer program

or reference program Rp to be executed on a computer Cr

shown at step 1. The user also selects an executable

behaviourally unknown computer program which is the program

to be tested Tp, shown at step 2, in which Tp is to be executed

on a computer Ct. Program Tp has been compiled from the same

source code as the reference program Rp. Computers Cr and Ct

are linked to communicate with each other and the selection of

Rp and Tp includes the identification of their respective file paths

or file locations.

Relevant Excerpt for E3 IN DESCRIPTION:

Col. 3 line 66 to Col. 4 line 5

Values of variables of Rp and Tp are obtained (read) and then

compared at step 5 by a comparison program on Cr. These

variables may be selected by the user if so desired and by default

all variables are selected. If a difference results, the differences

are output at step 6 to the user by displaying the differences

upon a visual display unit, outputting to a file or to any other

output unit.

Reference 2:

Patent/Publication Number: US6002869

Title: System and method for automatically testing software programs

http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6002869
http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/6002869

Page 4 of 7

Assignee/Applicant: Novell, Inc.

Filing Date: 26 Feb 1997

Priority Date: 26 Feb 1997

Also Published as: None

Page 5 of 7

Relevant Excerpt for E1 IN CLAIMS:

20. A computer program product comprising a computer readable

medium having a computer program logic thereon for enabling a

processor in a computer system to automatically perform tests on

a software program, the computer system having a memory,

accessible to said processor, in which is stored a test specification

file containing state definitions associated with the software

program, said software program having a plurality of states the

product comprising:

test engine means for testing discrete portions of said software

program in accordance with the test specification file, said test

engine means performing a plurality of test functions on the

software program, each of said test functions being associated

with and testing one of said discrete portions of said software

program, wherein, when each of said test functions are

successfully performed, said software program transitions from a

current state to a next state, wherein said test engine means

determines whether said software program transitioned correctly.

IN DESCRIPTION:

Col. 11, line 62 to Col. 12 line 6

As shown, the test history file 600 includes, for each state

transition, the time from the beginning of the test that the state

transition occurred (Elapsed Time). It also includes the Next State,

the Test Function, and the argument or value (Value), all of which

are defined with respect to the test specification file

Page 6 of 7

 500. For example, at time 0, the test procedure began and

transitioned to the START state. At 8.073024 microseconds, the

program 104 transitioned to the COMMON CONSOLE OPTIONS

state at line 9 of the test specification file 500. Comparison of the

two files 500 and 600 clearly illustrate the manner in which the

test engine 206 writes the test results to the test history file 600.

Relevant Excerpt for E2 IN DESCRIPTION:

Col. 13, lines 12-32

A test function executor 810, responsive to the test case generator

808, executes or applies the test functions 202 to the software

program 104 through the conventional software controller 208.

The test case generator 808 instructs the test function executor

810 to execute a specific test function 202 at a specific time to

advance the software program 104 from a current state to the

next at a predetermined rate. The test function executor 810 reads

the test functions 202 and arranges them in a function table 812.

The test function executor 810, in response to instructions

received from the test case generator 808, executes a specific test

function 202 in the function table 812. Upon executing each of the

test functions 202, the test function executor 810 informs the test

case generator 808 whether or not the software program 104

successfully executed the state transition. The test function

executor 810 uses the software controller 208 to exercise the

software under test 104. The results of the implemented test

function are returned from the software controller 208 to the test

function executor 810,

 which in turn forwards the results to test case generator 808.

Page 7 of 7

Relevant Excerpt for E3 Not Disclosed

**

